Total Harmonic Distortion Measurement System of Electronic Devices up to 100MHZ with Remarkable Sensitivity

> Takanori Komuro, Shingo Sobukawa Haruo Kobayashi, Hiroshi Sakayori

発表の概要

- ・研究の背景と高調波歪の測定方法
- 製作したFilter
- Filterの特性の検証
- ・高調波歪率計測の応用
- まとめ

・研究の背景と高調波歪の測定方法

- 製作したFilter
- Filterの特性の検証
- ・高調波歪率計測の応用
- まとめ

Audio帯域以外での歪率測定

- ヘテロダイン技術によるRF回路の場合
 - → 搬送波の2倍以上の周波数に出る高調波歪は関心の外
- ADC/DACを中心とした高速回路の場合
 - → 高調波歪の測定は適切な評価手法

高調波歪の測定原理

Audio帯域(~100kHz)

- Active Filterにより、-120dBcまで測定可能
- 市販測定器が存在する。

100MHz以上の帯域

– Spectrum AnalyzerのDynamic Range (90dB)で一応OK

100kHz~100MHzの帯域

- 90dB以上のDynamic Rangeを持つADC/DACが開発され ている。
- Active Filterに変わる手法が必要

定インピーダンス・フィルタの多重接続

•研究の背景と高調波歪の測 定方法

- 製作したFilter
- Filterの特性の検証
- 高調波歪率計測の応用
- ・まとめ

定出カインピーダンス型 Band-pass filter

- 出力インピーダンスが一定で縦列接続(21段)が可能 $\rightarrow f_0$ に対して2 f_0 、3 f_0 を十分に減衰させることが可能
- Qが低く、素子のバラツキの影響を受けにくい

21段BPFの特性 (Simulation値)

• -130dB以上の減衰を実測するのは困難

21段BPFの意義

 Jitterを低減するために、信号源として矩形波を 用いるためには、3次高調波を十分に減衰させる 必要がある。

使用部品の選定

Lが問題!!

- 低い周波数ほど大きなLが必要
- 電流が増えるにつれて、コアが歪む!!
- 比透磁率の高いコアほど歪みやすい
 - 比透磁率の低いコアは外形が大きくなる
- 複数使用により、1個あたりの電流を減らす
- ひずみをSpecしているCoreはない

・簡単なケースでは、-120dBcでの再現性が不足 ・アルミ削出しケースにスタッドで固定

 基本波のみを減衰させて、スペアナが扱える 程度にまで高調波とのレベル差を小さくする。

- BPFと同様に構成可能(5段構成)
- f₀に対して2 f₀、3 f₀も多少減衰するが、
 その補正は容易

- •研究の背景と高調波歪の測 定方法
- 製作したFilter
- Filterの特性の検証
- ・高調波歪率計測の応用
- ・まとめ

測定系の残留歪特性

Frequency Response				Over All	
Frequency	BPF Loss	BEF Nitch	2nd Distortion	3rd Distortion	Signal Voltage
Hz	dB (@1f)	dB (@1f)	dBc	dBc	Vp−p RL=50ohm
1 M	-6.5	-110	-143	-135	5
2M	-5.0	-119	-142	-146	5
5M	-5.6	-110	-146	-146	5
10M	-6.0	-106	-144	-142	5
20M	-6.0	-104	-136	-150	5
50M	-6.3	-110	-149	-153	3.1
100M	-5.6	-106	-143	-129	3.3

特性の検証

- BPFの出力を直接BEFに接続して確認した
- BPFの歪がBEFで打ち消されるとは考え難い
- -110dBcが限界であったProto Typeが 正常に評価されている

- 研究の背景と高調波歪の測 定方法
- 製作したFilter
- Filterの特性の検証
- 高調波歪率計測の応用
- ・まとめ

何の歪が測れるのか?

- Amp, Filter
- 受動素子: C, L, Relay
- 信号源:SG,DAC
- Receiver : Spectrum Analyzer, ADC

-120dBcは、1ppmに相当する。

歪の発生要因 ?

- ・ Diode的な動作: 接点のMIM構造, 空乏層容量
- Trの非線形性:Vbe|Ic, Ic|hfe, Cob|Vbc etc.
- 熱の影響
- Hysteresis
- INL of ADC, DAC
- And so on

歪率の測定例(Photo MOS Relay)

Off時の歪も重要である。

歪率の測定例(MEMS Relav)

Micro machined Relay

歪率の測定例(T/HAmp)

2nd harmonic distortion: -103dBc (-114.69dBm - (+4dBm)+ <u>14.6dB</u>) 出カレベル BEF挿入損失

3rd harmonic distortion: < -120dBc

歪率の測定例(ADC)

歪補正の原理

1)高精度の直流信号を用いて 系の入出力特性を測る

2)逆特性を計算し、 線型に補正するための データとする

Under Sampler + ADCの歪の補正

入力周波数:100MHz

直流での補正値が100MHz入力に対しても有効

- 研究の背景と高調波歪の測 定方法
- 製作したFilter
- Filterの特性の検証
- ・高調波歪率計測の応用
- まとめ

まとめ

- 従来は困難であった、1[~]100MHzでの 高調波歪測定用のToolを作成した。
- -120dBc以下の歪まで測定可能であり、 強力なToolとなっている。
- Relayなどの受動素子の歪も観測可能であり、 電子計測を通してミクロな物性を観察できる 可能性もある。